Implementation, achievements and opportunities WP5

Links between active site Zn^{2+} and C_{α} hydroxylation

- In Bc1960 the active site Zn²⁺ is loosely bound in the hydroxylation/ catalytic site, as revealed by crystallographic and ICP-MS experiments. The Pro hydroxylation levels of Bc1960 are despite this very high, they are affected by molecular oxygen or by some hydroxylation inhibitors.
- Other PDAs however (e.g. Ba0330/pdb id: 4V33; Bc1974/pdb id: 5N1J; 5N1P) with lower hydroxylation levels compared to Bc1960, display fully occupied Zn²⁺ sites, suggesting a tighter interaction with the metals.
- Ba3941 and its mutants show no Zn²⁺ binding. The restored (in terms of hydroxylation and catalysis) mutant Ba3943 N94D V95D A183R ((PDB id 6HM9) displays some levels of active site Zn²⁺.
- Overall, Zn^{2+} ions affect C_{α} hydroxylation, but probably only to some extent. These ions however, are critical for the catalytic (deacetylation) reaction.