Tinkering a distorted α/β barrel

by Alexis Molfetas Kokkinidis Lab

The Dead RELATIVE

RESURRECTION

Transition state stabilization

Surface Representation and Superposition of BA3943 Vs BC1960

The Dead Relative has a Cavity While an Active PDA homologue has an Arginine side chain occupying the same site

Why so Dead?

- Meeting with the family

- The dead relative

- Exploring ancestry and next of kin

Inactive Enzyme Homologues

90 $\% \alpha$ -carbon Pro Hydroxylation 80 (2-Hyp formation) 70 60 79.88 50 40 63.12 30 31.28 20 10 8.67 6.24 6.35 4.05 0 BC1960 BC1974 BA0330 BA0330 D205A BA3943 BA3943 N118D BA3943 N118D -V119D

BC1960 wt BC1974 wt BA0330 wt BA0330 D205A BA3943 wt BA3943 N94D BA3943 N94D V199D

	Motif 1		Modif 2
91	LTIDDA	141	VGNHSYTHP
91	LTI <mark>DV</mark> A	141	VGN <mark>H</mark> SYT <mark>H</mark> P
91	LTI <mark>NV</mark> A	141	VGN <mark>H</mark> SYT <mark>H</mark> P
202	VTF <mark>AD</mark> G	261	MQS <mark>H</mark> TAT <mark>H</mark> A
202	VTF <mark>DD</mark> G	261	MQS <mark>H</mark> TAT <mark>H</mark> A
73	LTF <mark>DD</mark> G	123	VGM <mark>H</mark> SMT <mark>H</mark> N
77	LTF <mark>DD</mark> G	128	IGN <mark>H</mark> TYS <mark>H</mark> P

165	PKFIRPXYG
160	PKLTRPPYG
296	VIAVAYX FG
296	VIAV <mark>A</mark> YXFG
178	VRWFAPP SG
178	VRWFAPPSG
178	VRWFAPPSG

Normal High-yield

Low-yield

~120 mg of eluted protein

<5 mg of eluted protein

Structure determination of *Ba*3943 mutants

Structural Superposition of BA3943 N94D with BC1960⁴

1) Pro residue lacks hydroxyl group.

2) The metal triad is disrupted.

3) The well conserved Arg in the vicinity of the catalytic Asp is replaced by an Ala, creating a cavity and potential de-stabilization of the active site.

Structural Superposition of BA3943 N94D with BC1960⁴

The arginine not only acts to coordinate the base, but possibly, the long side chain occupies an important position in the 3-dimensional space.

BC1960	wt	77	LTFDDG	128	IGNHTYSHP	165	PKFIRPXYG
BC1974	wt	73	LTFDDG	123	VGMHSMTHN	160	PKLT <mark>RPP</mark> YG
BA0330	wt	202	VTF<mark>DD</mark>G	261	MQS <mark>H</mark> TATHA	296	VIAV <mark>A</mark> YXFG
BA0330	D205A	202	VTF <mark>AD</mark> G	261	MQS <mark>H</mark> TAT <mark>H</mark> A	296	VIAV <mark>A</mark> YXFG
BA3943	wt	91	LTINVA	141	VGN <mark>H</mark> SYT <mark>H</mark> P	178	VRWF <mark>APP</mark> SG
BA3943	N94D	91	LTI <mark>DV</mark> A	141	VGN <mark>H</mark> SYT <mark>H</mark> P	178	VRWFAPPSG
BA3943	N94D V199D	91	LTIDDA	141	VGNHSYTHP	178	VRWFAPPSG
BA3943	N94D V199D A183R	91	LTIDDA	141	VGN <mark>H</mark> SYT <mark>H</mark> P	178	VRWF <mark>R</mark> PPSG
			Motif 1		Motif 2		Motif 3

Identify divalent metal

2Fo-Fc σ = 2.0 Fo-Fc σ = 4.5

BA3943 N94D V95D A183R (0.2mgr/ml) was incubated with glycol chitin at different pH values, temperatures, hours of incubation and a variety of metals.

at pH=7.0 (25mM Tris-HCl), 37°C, overnight.

Metal	СРМ			
Control	54			
Zn ⁺²	54			
Ni ⁺²	320			
Co ⁺² 558				
Mn ⁺²	360			
Table 4. Activity of BA3943 N94D V95D A183R in the presence of a variety of metals (1mM f.c.)				

EDS energy dispersive spectroscopy

+ CoCl₂ during the growth of the cell culture.
+ ZnCl₂ during the growth of the cell culture.

ICP-MS for metal presence

Is 2-hyp metal independent?

• α -carbon hydroxylation independent of metal presence

• BC1974 mutant (metal binding D to N) also hydroxylated

Protein	СРМ	% 2-Нур	Structural Data
Control	53	-	-
BA3943 wt	50	8,67 ± 1,697	1.1 Å (submitted)
BA3943 N94D	55	4,05 ± 1,923	1.5 Å (submitted)
BA3943 N94D V95D	50	6,39 ±2,960	-
BA3943 N94D V95D A183R	558	25 ± 6,397	1.7 Å (submitted)
BA3943 N94D V95D A183K	48	ND	-
BA3943 N94D V95D A183R P185G	?	ND	1.2 Å
BA3943 N94D V95D A183R Hyp deletion	58	ND	0.9 Å
BA3943 N94D A183R	145	ND	-
BA3943 N94D V95N A183R	42	ND	Unreliable dataset
BA3943 N94D V95N A183R L235A	-	ND	-
BA3943 N94D V95N A183R L235D	-	ND	-

Protein	СРМ	% 2-Нур	Structural Data
Control	53	-	-
BA3943 wt	50	8,67 ± 1,697	1.1 Å (submitted)
BA3943 N94D	55	4,05 ± 1,923	1.5 Å (submitted)
BA3943 N94D V95D	50	6,39 ± 2,960	-
BA3943 N94D V95D A183R	558	25 ± 6,397	1.7 Å (submitted)
BA3943 N94D V95D A183K	48	ND	-
BA3943 N94D V95D A183R P185G	?	ND	1.2 Å
BA3943 N94D V95D A183R Hyp deletion	58	ND	0.9 Å
BA3943 N94D A183R	145	ND	-
BA3943 N94D V95N A183R	42	ND	Unreliable dataset
BA3943 N94D V95N A183R L235A	-	ND	-
BA3943 N94D V95N A183R L235D	-	ND	-

A mysterious N-terminal domain

In vivo experiments performed by A. Tomatsidou

Scanning Electron Microscopy of 7702 and $\Delta ba3943$ mutant strain during exponential phase of growth.

Localization of BA3943 using GFP

The NodB domain

- Distorted α/β barrell
- 7 or 8 parallel β-strands form the hydrophobic core
- Equal no. of α-helices surround it
- Active site at the C-termini of β-strands

In Ba0330 the occupies the same site, but originates from a different residue.

BA0330

β-strand sequence of the central barrel

-C

N-

2 topological diagrams

Same basic fold

Collaboration with Prof. Fadouloglou

Categorisation of every known

NodB structure in the CE4 family

Topology a

Topology b

Extra α -helices

Collaboration with Prof. Fadouloglou

Correspondence Analysis

Group d Second metal binding site

Conclusions

There is more than one way to make the same fold

New classification of the NodB domain on the basis of phylogeny relationships and topology or structural modifications. We show that this classification is correlated to the diverse functionalities of NodB.

Sequence and structural variations in the NodB core give rise to variations in substrate specificity.

Thank you for your time and patience!

SPECIAL THANKS TO

Prof. M. Kokkinidis

Prof. V. Fadouloglou

Prof. V. Bouriotis

Dr. Stratos Mylonas

Dr. Anastasia Tomasidou

Ntina Kotsifaki

INSTITUTE OF MOLECULAR BIOLOGY & BIOTECHNOLOGY

IZN/SNF

UNIVERSITY OF CRETE